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Abstract

A straight elastica is bent until its ends are vertical and a _xed distance apart\ and then it is pushed onto
a ~at rigid surface[ The weight of the strip and friction between the strip and the surface are neglected[
Planar equilibrium states of the strip are investigated\ using either a shooting method or an integral
formulation[ Both symmetric and asymmetric con_gurations are possible[ There may be a single point of
contact\ a ~at region of contact\ or two points of contact with a buckled section between them[ Also\ if the
ends are pushed down su.ciently far\ one or two loops may form when the upper portion of the strip makes
contact with the lower portion on the surface[ If the two ends are held together "vertically# and then pushed
down\ asymmetric con_gurations may occur in which there is a region of contact between the upper and
lower portions of the strip near their ends[ The properties of these various equilibrium shapes are investigated[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

A thin\ uniform\ horizontal\ inextensible\ ~exible strip is considered[ The ends of the strip are
lifted\ bent\ and clamped vertically at an equal height and a speci_ed distance apart\ as shown in
Fig[ 0[ Then the ends are moved downward and the strip makes contact with a ~at\ rigid\ horizontal
surface[ Various planar equilibrium shapes are possible\ including] symmetric with a single contact
point as in Fig[ 1"a#^ symmetric with a ~attened region as in Fig[ 1"b#^ symmetric with two contact

� Corresponding author[
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Fig[ 0[ Equilibrium shapes before contact] "a# c � 9^ "b# c � 9[1^ "c# c � 9[3^ "d# c � 9[5^ "e# c � 9[7[

points and a buckled region as in Figs 1"c# and 1"d#^ symmetric with two outer loops as in Fig[
1"e#^ asymmetric with a single contact point as in Fig[ 1" f#^ asymmetric with a ~attened region as
in Fig[ 1"g#^ and asymmetric with a ~attened region and a loop as in Fig[ 1"h#[ Tick marks in Fig[
1 indicate points of contact or lift!o} of the lower portion of the strip with the surface\ and the
scales are di}erent in each part of the _gure[

Some related problems have been treated in the literature[ Wang "0870# analyzed an elastica
bent between two horizontal surfaces\ with each end of the elastica tangential to one of the surfaces[
Iseki et al[ "0878a\ b# considered a curved strip\ with pinned or clamped ends\ that was compressed
by a ~at plate[ The strip was extensible\ and only symmetric deformations were studied[ Exper!
imental results were presented\ as well as numerical results obtained with the _nite element method[
The transition from the ~attened to the buckled con_guration could occur smoothly or suddenly
"snap!through#[ In Grigolyuk and Shalashilin "0880#\ the same type of problem was examined
numerically for an elastic circular arch with pinned ends[

Compression of an in~ated spherical membrane by parallel rigid plates was analyzed by Feng
and Yang "0862# and Evans and Skalak "0879#[ Similar studies involving shells include Wang
"0876# for cylindrical tubes "and rings#\ Mack et al[ "0872# and Sugita "0874# for toroidal shells\
and Kinkead et al[ "0883# and Nowinka and Lukasiewicz "0883# for spherical shells[ The shells are
~attened by the plates and in some cases buckle inward with a pro_le of the form in Fig[ 0"c#[
These investigations have been related to the denting of vehicles\ ships\ and submarines "Kitching
et al[\ 0864#\ the deformations of tires "Mack et al[\ 0872#\ the testing of pressure on the cornea
"Updike and Kalnins\ 0861#\ and the adhesion of vesicles and red blood cells to surfaces "Evans\
0879#[

In this paper\ the strip is assumed to be elastic and inextensible\ and the bending moment is
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Fig[ 1[ Some equilibrium shapes] "a# symmetric with point contact^ "b# symmetric with line contact^ "c# symmetric with
buckled region^ "d# symmetric and buckled with self!contact^ "e# symmetric with two loops^ " f# asymmetric with point
contact^ "g# asymmetric with line contact^ "h# asymmetric with loop[

assumed to be proportional to the curvature\ i[e[\ the strip is an elastica "Gorski\ 0865#[ The weight
of the strip is neglected\ and friction between the strip and the rigid surface also is neglected[
Equilibrium shapes are analyzed[ Numerical solutions are obtained using either a shooting method
or a formulation involving integrals[ As the strip is pushed down onto the ~at surface\ the variations
of the contact region and the forces and moments at the ends of the strip are determined[



R[H[ Plaut et al[ : International Journal of Solids and Structures 25 "0888# 0198Ð01180101

Fig[ 2[ Free body diagram of right half of strip before contact[

1[ No contact

Equilibrium shapes\ before contact occurs\ are considered _rst[ The length of the strip is 1L and
the bending sti}ness is EI[ The initially!straight elastica is bent until its ends are a distance 1C
apart at a _xed height\ and the ends are clamped with vertical slopes[ The right half of the strip is
drawn in Fig[ 2[ The origin of the coordinate system is placed at the bottom where the slope is
zero[ The arc length is S\ the angle of the tangent with the horizontal is u\ and the horizontal and
vertical coordinates are X and Y\ respectively[ The constant horizontal force is P and the variable
bending moment is M\ with M � Mb at S � 9 and M � Mo at S � L[ Positive senses are as shown
in Fig[ 2[

From geometry\ the momentÐcurvature relation\ and equilibrium of an element\ the governing
equations are

dX
dS

� cos u\
dY
dS

� sin u\ EI
du

uS
� M\

dM
dS

� −P sin u[ "0a\b\c\d#

The known end conditions are X � Y � u � 9 at S � 9\ and X � C\ u � p:1 at S � L where the
height is denoted Y"L# � Ho for this no!contact case[

The following nondimensional quantities are introduced]

x � X:L\ y � Y:L\ s � S:L\ ho � Ho:L\ h � H:L\

b � B:L\ c � C:L\ d � D:L\ d � D:L\ m � ML:"EI#\ mb � MbL:"EI#\

mo � MoL:"EI#\ p � PL1:"EI#\ q � QL1:"EI#\ u � UL:"EI# "1#
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where H\ B\ D\ D\ Q\ and U will be de_ned later[ In nondimensional form\ the governing eqns "0aÐ
d# become

dx
ds

� cos u\
dy
ds

� sin u\
du

ds
� m\

dm
ds

� −p sin u "2a\b\c\d#

with x � y � u � 9 at s � 9\ and x � c\ u � p:1 at s � 0[
For a speci_ed value of c\ "2aÐd# are solved with a shooting method "Wolfram\ 0880^ Bahder\

0884#[ Values of m"9# and p are guessed\ the equations are integrated numerically until s � 0\ and
these values are then varied using the secant method or Brent|s method until the end conditions
at s � 0 are satis_ed with su.cient accuracy[ The nondimensional height ho is given by y"0#[
"Alternatively\ if c need not be speci_ed\ one can vary p until u � p:1 at s � 0\ and then c is the
obtained value of x at s � 0[#

Another type of solution procedure in terms of integrals is also available[ Eqns "2c\d# lead to

du

us
� 2

0
r

"3a#

where

r � 0:z1p"`¦cosu# "3b#

and ` is a constant[ When there is no in~ection point "i[e[\ when mo turns out to be positive#\ the
positive sign is used in "3a#[ Then\ using "2a\ b\ 3a\ b# and integrating\ one can show that

s � g
u

9

r du\ x � g
u

9

r cos u du\ y �X
1
p
"z`¦0−z`¦ cos u#[ "4a\b\c#

If the integration is carried out till the right end of the strip\ these equations become

0 � g
p:1

9

r du\ c � g
p:1

9

r cos u du\ ho �X
1
p
"z`¦0−z`#[ "5a\b\c#

If c is speci_ed\ one can solve "5a\ b# numerically for ` and p "Bahder\ 0884#\ and then determine
ho from "5c#[ If not\ one can vary ` and compute p\ c\ and ho directly from "5aÐc#[ The case ` � 9
gives c � 9[346[

For c³9[346\ there is an in~ection point on each half of the strip[ If the value of u at the
in~ection point on the right half is denoted a\ "5aÐc# are replaced by

0 � g
a

9

r du−g
p:1

a

r du\ c � g
a

9

r cos u du−g
p:1

a

rcos u du\

ho � g
a

9

r sin u du−g
p:1

a

r sin u du\ "6a\b\c#

where r is given in "3b# with ` � −cosa "since the bending moment is zero at the in~ection point#[
For a given value of c\ "6a\ b# are solved numerically for a and p\ and ho is determined from "6c#[
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Fig[ 3[ E}ect of separation length of ends on] "a# height^ "b# end moments^ "c# horizontal force[

Once the reactions are known\ equilibrium shapes can be determined by numerical integration
of the equilibrium equations "2# or from the integral formulation "4#[ The shapes for c � 9\ 9[1\
9[3\ 9[5\ and 9[7 are depicted in Fig[ 0[ Further results are presented in nondimensional form in
Fig[ 3 and Table 0[ The height ho\ end moment mo\ and horizontal force p are plotted versus the
separation parameter c for the range 9³c³9[7 in Fig[ 3[ As c is increased from 9\ the height
increases from ho � 9[738 until it reaches 9[742 at c � 9[98 and then decreases\ the horizontal
forces act inward until c � 9[526 � 1:p "when the shape is circular#\ and the moment at the right
end is counter!clockwise until c � 9[346[ The moment mb at the bottom "s � 9# can be obtained
by equilibrium "Fig[ 2#[

Table 0
No contact "O#

c ho p mo

9 9[738 8[80 −2[92
9[1 9[734 5[82 −0[64
9[3 9[689 3[15 −9[304
9[5 9[557 9[768 0[19
9[7 9[326 −6[82 3[91
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The solution for c � 9 was previously given by Wang "0870#[ He obtained the similarity solution

sloop � 5[18577:zp\ ho � 1[56070:zp\ mo � −9[85052zp\ mb � 0[60907zp[ "7#

where sloop is the nondimensional length of the loop\ equal to 1 in this case\ and where p and mo

act just below the right end of the strip[ This solution will be utilized later in the analysis of the
central portion of the equilibrium con_guration depicted in Fig[ 0"d#[

2[ Symmetric with point contact

Next\ assume that the center of the bent strip comes into contact with a ~at surface parallel to
the line connecting the ends of the strip\ as shown in Fig[ 1"a#[ The height of the strip is H\ and
the downward de~ection of the ends relative to the no!contact height is D "Fig[ 2#\ so that
D � Ho−H[ "In nondimensional terms\ d � ho−h ðsee eqn "1#Ł[# The right half of the strip is
shown in Fig[ 4[ The downward force on each end is Q\ and the upward reaction force at the
contact point is therefore 1Q[

In this case\ the governing nondimensional equations are "2aÐc# and

dm
ds

� −p sin u¦q cos u "8#

where q is de_ned in eqn "1#[ The end conditions are again x � y � u � 9 at s � 9\ and x � c\
u � p:1 at s � 0[ The same shooting method described in Section 1 is applied here\ with the
additional speci_cation of q[ The value of q is increased from zero until the bending moment mb

at the contact point decreases to zero\ at which point the contact zone spreads as detailed in Section
3[

Fig[ 4[ Free body diagram of right half of strip with symmetric point contact[
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Fig[ 5[ For c � 9\ e}ect of downward displacement on] "a# contact length^ "b# moments near end^ "c# vertical forces near
end^ "d# horizontal force in strip[

Results for c � 9\ 9[1\ 9[3\ 9[5\ and 9[7 are depicted in Figs 5Ð09\ respectively[ The quantities b\
mo\ q\ and p are plotted as functions of the downward de~ection d[ Symmetric equilibrium shapes
with central point contact are associated with segment OF "on which the contact length parameter
b is zero# in these _gures[ The parameter values at point F\ where mb becomes zero\ are listed in
Table 1[ At F\ the equilibrium shapes for c � 9\ 9[1\ 9[3\ and 9[5 exhibit in~ection points "since
mo³9#\ while the one for c � 9[7 does not[ The con_guration in Fig[ 1"a# corresponds to the case
c � 9[1 with d � 9[943[

One can de_ne a {{spring constant|| for this symmetric downward de~ection with central point
contact\ using the total downward force 1q at F divided by the de~ection d at F[ In dimensional
terms\ one obtains the values 142EI:"L2#\ 156EI:"L2#\ 148EI:"L2#\ 129EI:"L2#\ and 070EI:"L2#\
respectively\ for c � 9\ 9[1\ 9[3\ 9[5\ and 9[7[ The initial {{spring constant||\ computed from twice
the slope at O in Figs 5Ð09\ is approximately 406EI:"L2#\ 338EI:"L2#\ 268EI:"L2#\ 295EI:"L2#\ and
070EI:"L2#\ respectively[

3[ Symmetric with line contact

As the strip is pushed down further\ the central region ~attens against the surface and there is a
line of contact[ The unknown length of the ~attened region is 1B\ as shown in Fig[ 00[ Figure 4
can be used to illustrate the right part of the strip that is above the surface\ except that the
horizontal length is now C−B rather than C\ and the value of S at the right end is L−B rather
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Fig[ 6[ For c � 9[1\ e}ect of downward displacement on "a# contact length^ "b# end moments^ "c# vertical forces^ "d#
horizontal force[

Fig[ 7[ For c � 9[3\ e}ect of downward displacement on] "a# contact length\ "b# end moments\ "c# vertical forces\ "d#
horizontal force[
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Fig[ 8[ For c � 9[5\ e}ect of downward displacement on] "a# contact length^ "b# end moments^ "c# vertical forces^ "d#
horizontal force[

Fig[ 09[ For c � 9[7\ e}ect of downward displacement on] "a# contact length^ "b# end moments^ "c# vertical forces^ "d#
horizontal force[
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Table 1
Transition from symmetric point contact to symmetric line contact "F#

c h d q p mo

9 9[569 9[068 11[5 7[94 −4[28
9[1 9[604 9[020 06[3 09[1 −2[79
9[3 9[582 9[9855 01[4 09[2 −1[01
9[5 9[591 9[9548 6[48 6[48 −9[9077
9[7 9[398 9[9164 1[38 −2[68 2[43

Fig[ 00[ Geometry of strip for symmetric shape with line contact[

than L[ Also\ since u and hence M are zero on the ~attened region\ and M is continuous at the lift!
o} point "S � 9#\ Mb � 9 in this case[

The governing equations are "2aÐc# and "8#\ with end conditions x � y � u � m � 9 at s � 9\
and x � c−b\ u � p:1 at s � 0−b where b is de_ned in eqn "1#[ A scaled arc length z is introduced
in this uplifted region as

z � s:t where t � 0−b[ "09a\b#

The nondimensional length t is treated as a variable which has a constant value[ The governing
equations then become

dx
dz

� t cos u\
dy
dz

� t sin u\
du

dz
� tm\

dm
dz

� −tp sin u¦tq cos u\
dt
dz

� 9\ "00a\b\c\d\e#

and the conditions at the upper end z � 0 become x � c¦t−0 and u � p:1[ The system is solved
using a shooting method[ The separation parameter c is speci_ed and q is set at a value greater
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Fig[ 01[ Sequence of symmetric shapes with line contact "c � 9[5#[

than the _nal value from the point!contact case in Section 2[ Then values of t"9# and p are varied
until the conditions at z � 0 are satis_ed[ Alternatively\ a solution procedure in terms of integrals
can be derived\ using eqn "3a# with

r � 0:z1"p cos u−p¦q sin u#[ "01#

At the ends of the strip\ u � p:1 and one obtains the relation mo
1 � 1"q−p#[

In Figs 5Ð09\ the solid curves from F to T correspond to symmetric equilibrium shapes with line
contact[ These shapes have in~ection points when mo is negative\ which occurs for all cases in Figs
5Ð09 except when d³9[024 for c � 9[7[ Figure 1"b# depicts the con_guration for c � 9[1 and
d � 9[398[ A sequence of equilibrium shapes for c � 9[5 is shown in Fig[ 01\ with the end points
_xed at the same height[ The values of d for these shapes are 9[082\ 9[120\ 9[159\ 9[172\ and 9[292\
respectively\ with corresponding half!lengths b of the ~attened region equal to 9[297\ 9[267\ 9[314\
9[350\ and 9[378[

The initial {{spring constant|| for the downward de~ection when the strip begins to ~atten
"i[e[\ 1dq:dd at F#\ in dimensional terms\ is approximately 028EI:"L2#\ 036EI:"L2#\ 041EI:"L2#\
041EI:"L2#\ and 041EI:"L2#\ respectively\ for c � 9\ 9[1\ 9[3\ 9[5\ and 9[7[ As the strip is pushed
down further and the length of the ~attened region increases\ the spring constant increases "as
indicated by the increasing slope on the segments FT in part "c# of Figs 5Ð09[

4[ Symmetric with buckled region

If c×9[40\ the ~attened region in the symmetric case described in Section 3 can buckle upward
as the elastica is pushed down[ The case c � 9[5 with d � 9[088 and b � 9[365 is shown in Fig[
1"c#\ where b is half the length between the two contact points[ This type of buckling occurs when
the compressive force p reaches the value "p:b#1\ which is the nondimensional critical load for a
clamped!clamped column of length 1b[ The critical values of the parameters can be computed by
putting p � ðp:"0−t#Ł1 in eqn "00d# and using the shooting method described above but with
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Fig[ 02[ E}ect of downward displacement on contact length near bifurcation points G and J for c � 9[5[

Fig[ 03[ E}ect of downward displacement on height of buckled region "c � 9[5 and 9[7#[

variable t"9# and q[ For c � 9[5 and 9[7\ the critical point is denoted J in Figs 8\ 09\ 02\ and 03\
and in Table 2[

The shape of the strip can be obtained using a shooting method[ In this case the origin is placed
at the center of the buckled region\ so that x � y � u � 9 at s � 9\ and x � c\ u � p:1 at s � 0\ in
nondimensional terms[ Equations "2aÐc# and "8# are integrated numerically\ with q � 9 in "8# until
u is zero "at the contact point#[ The value of q is speci_ed and values of m"9# and p are varied until
the conditions at s � 0\ are satis_ed[

In some cases it is di.cult to determine values of m"9# and p which will lead to convergence of
the shooting method\ and then a solution in terms of integrals may be more convenient[ In
nondimensional terms\ one!fourth of the buckled region can be treated as a cantilever subjected
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Table 2
Bifurcation of buckled shape and symmetric line contact "J\ J�#

c point h d b q p mo

9[5 J 9[250 9[297 9[384 56[6 39[1 −6[31
9[5 J� 9[250 9[297 9[350 22[2 25[2 −2[78
9[7 J 9[182 9[033 9[414 25[9 24[7 −9[471
9[7 J� 9[182 9[033 9[427 22[6 22[8 −9[229

to a horizontal load p[ The solution for the buckled region can be expressed in terms of complete
elliptic integrals of the _rst kind\ K"k#\ and the second kind\ E"k#\ where 9³k³0 "Timoshenko
and Gere\ 0850#[ One obtains the relationships

b � 1ð1E"k#−K"k#Ł:zp\ r � 1K"k#:zp\ mb � 1kzp\ d � 3k:zp "02a\b\c\d#

where r and mb are the values of s and the bending moment\ respectively\ at the right contact point\
and d is the nondimensional height of the buckled region\ de_ned in eqn "1# where D is the
dimensional height[

For the region between the right contact point and right end\ if there is no in~ection point\ one
can show that

0−r � g
p:1

9

r du\ c−b � g
p:1

9

r cos u du "03a\b#

where

r � 0:z1"p cos u−p¦q sin u¦9[4m1
b#[ "04#

With the use of eqns "02aÐc\ 04#\ "03a\ b# can be written in terms of c\ k\ p\ and q[ Then one can
specify two of these parameters "such as c and p\ or c and q# and solve numerically for the remaining
two[ If there is an in~ection point ðas in Fig[ 1"c#Ł\ the right!hand sides of eqns "03a\ b# are replaced
by the right!hand sides of eqns "6a\ b#\ respectively\ then a third equation is obtained by setting
the denominator in eqn "04# equal to zero at u � a "the in~ection point#\ and the three equations
are solved numerically with a being an additional unknown parameter[ The height h can be
computed from the right!hand side of eqn "6c#\ and the moment mo at the support can be obtained
from equilibrium[ The outer regions have in~ection points if mo³9\ which occurs for c � 9[5 if
d³9[286 and for c � 9[7 if d³9[038[

The variations of b\ mo\ q\ and p with d for c � 9[5 and 9[7 are plotted as the dotted curves JV
in Figs 8 and 09\ respectively[ The behavior near the bifurcation point in Fig[ 8 is expanded in Fig[
02[ In addition\ the variation of the nondimensional buckled height d along the curves JV is shown
in Fig[ 03[ The central region can de~ect higher than the ends of the strip "i[e[\ d can be larger than
h#[ This occurs when d becomes greater than 9[227 for c � 9[5 and 9[192 for c � 9[7[

The dotted curves JV in Figs 8 and 09 bifurcate in the direction of smaller values of d at J\ and
then turn around toward larger values of d "see Fig[ 02#[ This means that if the strip is in a
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Table 3
Formation of two loops in symmetric line contact

c h d b bloop q p mo

9 9[9530 9[674 9[139 9[056 54[1 −18[6 −06[5
9[1 9[9401 9[683 9[281 9[023 091 −35[3 −11[9
9[3 9[9273 9[640 9[433 9[099 070 −71[4 −18[2
9[5 9[9145 9[532 9[585 9[9557 397 −075 −32[8
9[7 9[9017 9[313 9[737 9[9223 0529 −631 −76[7

symmetric\ ~attened equilibrium shape when it reaches J\ the transition to the buckled shape is
not smooth and there is a sudden snap to point J� "see Figs 02 and 03#[ For c � 9[5 and 9[7\
respectively\ the central de~ection jumps to a height of d � 9[142 and 9[9334\ and the values of the
other parameters at J� are listed in Table 2[ It is seen that q\ p\ and =mo= decrease suddenly when
the elastica snaps\ whereas b decreases if c � 9[5 and increases if c � 9[7[

Equilibrium con_gurations with the form shown in Fig[ 1"d# also may exist if c is su.ciently
small[ The two sides of the buckled region come into contact at a point "self!contact#[ The portion
between the two surface contact points is the same as that for a compressed buckled elastica with
clamped ends "Flaherty and Keller\ 0862#[ To analyze shapes of this type\ the similarity solution
eqn "7# is used for the central loop\ and an integral solution is applied to the remaining length[
There is no vertical force component in the segments between the surface contact points and the
self!contact point\ and the horizontal component is smaller in the loop than in the rest of the strip
due to the force at the point of self!contact "except for the initiation of self!contact\ when the
nondimensional horizontal force in the loop is also equal to p#[ Figure 1"d# depicts the shape for
this initiation when c � 9[1\ with h � 9[9367\ d � 9[686\ q � 161\ p � 10[6\ and mo � 12[6[

5[ Symmetric with two loops

Equilibrium shapes such as the one depicted in Fig[ 1"e# may exist if the strip is pushed down
su.ciently far[ The upper part of the strip makes contact with the ~attened part "on the surface#
at two points[

To _nd the equilibrium solutions for this form\ a similarity solution given by Wang "0870# is
utilized for the loops[ If Q1 denotes the reaction force at each end of the contact region\ then in
nondimensional terms

p � −9[34421q1\ bloop � 0[23843:zq1\

su � 4[15181:zq1\ mb � 0[23843zq1 "05#

where q1 � Q1L
1:"EI#\ bloop is the contact length of each loop\ su is the arc length of the uplifted

part of each loop\ and mb is the bending moment for the upper part of the strip at the contact
point[ The shape between the clamped ends and the contact points can be determined using either
a shooting method or an integral formulation[

Table 3 lists the minimum values of d at which this type of shape can exist for c � 9\ 9[1\ 9[3\
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9[5\ and 9[7\ along with corresponding values of other parameters "1b is the total contact length#[
The values of d are outside the ranges plotted in Figs 5Ð09[ Figure 1"e# is associated with the case
c � 9[1 in Table 3[

6[ Asymmetric equilibrium shapes

Asymmetric equilibrium con_gurations are possible[ Three types are illustrated in Figs 1" f#\ "g#\
and "h#[ When an asymmetric shape exists\ the mirror image also exists[ Figure 04 depicts the
coordinate systems and forces used in the analysis for the cases in Figs 1" f# and "g#\ with B � 9 in
Fig[ 1" f#[ The notation and nondimensionalization are similar to those used before\ except that
subscripts are added when appropriate[

First\ the case of point contact is considered "Fig[ 1" f##[ Either a shooting method or integral
formulation can be used to obtain solutions[ If c is su.ciently small\ bifurcation occurs from a
shape with symmetric point contact to asymmetric shapes with point contact[ Results for c � 9
and 9[1 are plotted as dash!dot segments GW in Figs 5 and 6\ respectively\ with G denoting the
bifurcation point[ The parameters at G are listed in Table 4[ Figure 1" f# corresponds to the case
c � 9[1\ h � 9[289\ d � 9[344\ q0 � 2[09\ q1 � 17[5\ p � −2[26\ mo0 � 2[59\ and mo1 � −6[88[

Next\ asymmetric con_gurations with line contact are treated "Figs 1"g# and 04#[ A shooting
method is used to obtain solutions[ There are ten _rst!order equations\ given by eqns "00aÐe# with
subscripts 0 and then 1 added to all quantities except p and z[ The scaled arc length z varies from
9 to 0 on both uplifted segments[ The known initial conditions at z � 9 are
x0 � y0 � u0 � m0 � x1 � y1 � u1 � m1 � 9[ Values of c and p are speci_ed\ and values of t0"9#\
t1"9#\ q0\ and q1 are varied until the following conditions are satis_ed at z � 0] u0 � p:1\ u1 � p:1\
y0 � y1\ and x0¦x1−t0−t1 � 1"c−0#[ "This last condition is derived by eliminating b in the two
relations x0¦x1¦1b � 1c and t0¦t1¦1b � 1 governing horizontal and arc lengths[# In Fig[ 04\
Mo0 as drawn is the negative of M0 at the left end\ due to the orientation of the coordinate system[

A solution in terms of integrals is utilized when appropriate initial guesses for shooting cannot
be found easily[ It is assumed that the strip has an in~ection point on the right part when u � a\
but not on the left part[ The values of s0\ x0\ and y0 at the left end\ denoted sL\ xL\ and yL\ are given
by the integrals of r\ r cos u\ and r sin u\ respectively\ from u � 9 to u � p:1\ where r is given by
"01# with q replaced by q0[ The values of s1\ x1\ and y1 at the right end\ denoted by sR\ xR\ and yR\

Table 4
Bifurcation of symmetric and asymmetric shapes "G#

c h d b q p mo

9 9[708 9[9181 9 5[55 8[19 −2[32
9[1 9[669 9[9640 9 01[4 8[99 −2[90
9[3 9[478 9[199 9[064 11[8 04[3 −2[78
9[5 9[282 9[164 9[349 40[5 23[5 −4[72
9[7 9[077 9[138 9[626 127 049 −02[1
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Fig[ 04[ Geometry of strip for asymmetric shape with line contact[

are given by the right sides of eqns "6a\ b\ c#\ respectively where r is given by "01# with q replaced
by q1[ Based on equal heights of the ends\ the given separation length and arc length\ and zero
bending moment at u � a\ there are three conditions\

yL � yR\ sL¦sR¦1c � xL¦xR¦1\ p cos a−p¦q1 sin a � 9 "06a\b\c#

involving a\ p\q0\ and q1[ One of these parameters is speci_ed\ and eqns "06a\ b\ c# are solved
numerically for the remaining three[

In Figs 5 and 6 "with c � 9 and 9[1\ respectively#\ the asymmetric shapes change from point
contact to line contact at W[ The curves ending at N0 correspond to the side of the strip with the
shorter uplifted arc length "i[e[\ the left side in Fig[ 04#\ and N1 to the other side[ Parameters at W
for c � 9 and 9[1 are listed in Table 5[ Figure 1"g# depicts the con_guration for c � 9[1\ h � 9[078\
d � 9[545\ b � 9[103\ q0 � 04[9\ q1 � 18[0\ p � −09[2\ mo0 � 6[01\ and mo1 � −7[77[

For c � 9[3\ 9[5\ and 9[7\ in Figs 7\ 8\ and 09\ respectively\ bifurcation occurs from symmetric
line contact to asymmetric line contact at G[ The parameters at this point are given in Table 4[ As
d is increased past its value at G\ the asymmetric contact length _rst decreases slightly and then
increases\ as shown on the dash!dot path GN in part "a# of Figs 7Ð09[

If c×9 and the strip is pushed down su.ciently far in an asymmetric shape\ the upper part of
the strip on one side will contact the surface\ as depicted in Fig[ 1"h#[ The similarity solution in

Table 5
Transition from asymmetric point contact to asymmetric line contact "W#

c h d q0 q1 p mo0 mo1

9 9[141 9[485 7[05 07[6 −5[23 4[28 −6[97
9[1 9[273 9[351 2[05 17[5 −2[47 2[56 −7[92
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Table 6
Formation of loop in asymmetric line contact

c h d b bloop q0 q1 p mo0 mo1

9[1 9[988 9[635 9[290 9[148 55[5 16[1 −01[3 01[5 −00[2
9[3 9[964 9[604 9[365 9[083 007 37[2 −11[9 05[6 −04[0
9[5 9[938 9[508 9[589 9[018 155 098 −38[4 14[0 −11[6
9[7 9[914 9[301 9[714 9[9536 0954 324 −087 49[1 −34[2

eqn "05# is utilized to analyze the loop\ and a shooting method or integral formulation is applied
to the other uplifted segments[ For c � 9[1\ 9[3\ 9[5\ and 9[7\ this form occurs _rst at the values of
d given in Table 6\ along with the other listed parameters "1b is the total contact length#[ These
points are out of the ranges in Figs 6Ð09[ The shape in Fig[ 1"h# corresponds to the case c � 9[1
in Table 6[

The case c � 9\ in which the ends of the strip are clamped together\ deserves special attention[
Figure 05 illustrates three equilibrium shapes[ When d reaches the value 9[557\ shown in Fig[ 05"a#\
the curvatures at the ends of the upper and lower portions of the strip become identical[ The
other parameters at this stage "which is beyond the range of Fig[ 5# are h � 9[070\ b � 9[963\
q0 � q1 � 07[2\ p � −6[43\ and mo0 � −mo1 � 6[08\ where the forces and moments are measured
just below the clamped end[

As the strip is pushed down further\ a contact region is formed between the upper and lower
portions[ Figure 05"b# depicts the case d � 9[577\ h � 9[050\ b � 9[9815\ q0 � 07[3\ q1 � 08[2\
p � −7[59\ and total moment m � 03[3 at the end[ Contact occurs between the clamped end and
the leftmost tick mark[ In this region\ the e}ective bending sti}ness is doubled\ so that the left side

Fig[ 05[ For c � 9\ equilibrium shapes when upper and lower portions] "a# have same curvature at clamped end^ "b# are
in contact for a region near the end^ "c# are in contact from the end to the surface[
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of "2c# is multiplied by the factor 1[ The shooting procedure involves three sets of equations of the
form "00aÐe#\ with arc lengths starting at the two lift!o} points and the clamped end[

Finally\ if d is su.ciently high\ the upper and lower portions of the strip are in contact from the
clamped end to the surface\ as in Fig[ 05"c#[ Equations "05# are applied for the loop[ The given
total arc length leads to the condition

su¦bloop¦1g
p:1

9

rdu � 1 "07a#

where

r � 0:z"q0¦q1# sin u¦9[14m1
b [ "07b#

The right reaction force q1 is speci_ed\ then su\ bloop\ and mb are computed from eqn "05#\ and then
eqn "07a# is solved numerically for the left reaction force q0[ In Fig[ 05"c#\ d � 9[581\ h � 9[045\
b � 9[036\ q0 � 11[9\ q1 � 19[8\ and the total moment at the clamped end is m � 03[4[

7[ Concluding remarks

Some interesting planar equilibrium shapes have been demonstrated for a thin\ inextensible\
elastic strip that is bent and then pushed down onto a ~at surface[ First the equilibrium shape for
the bent elastica was determined for various separation distances between the clamped ends "Fig[
0#[ Then the strip was pushed down onto a ~at surface\ and various equilibrium con_gurations
were obtained "Fig[ 1#[ Both symmetric and asymmetric shapes are possible\ and cases with point
contact\ line contact\ buckling of a central region\ and one or two loops may occur[

The problem involves displacement control "Bazant and Cedolin\ 0880#\ and the results depend
on the nondimensional downward displacement d of the clamped ends[ As the bent strip is pushed
down on the surface\ the initial shape is symmetric and there is contact only at the central point
of the strip ðFig[ 1"a#Ł[ With the use of Fig[ 4\ symmetry\ and eqn "1#\ the total potential U of the
strip in this shape can be written in nondimensional terms as

u � g
0

9 0
du

ds1
1

ds¦1qg
0

9

sin u ds¦1pg
0

9

cos u ds[ "08#

As d is increased from zero\ u has a local minimum initially\ and this symmetric point!contact
con_guration is stable initially[

If the nondimensional separation distance between the clamped ends is c � 9[1\ the symmetric
form with point contact becomes unstable when the bifurcation point G in Fig[ 6 is reached[ Upon
further increase of d\ this state becomes unstable and the strip moves to the left or right into an
asymmetric con_guration with point contact ðFig[ 1" f#Ł[ At W in Fig[ 6\ the curvature of the strip
at the contact point vanishes\ and thereafter a ~at contact region "line contact# exists ðFig[ 1"g#Ł[
With further downward displacement\ the upper portion of the strip makes contact with the lower
portion\ forming a loop ðFig[ 1"h#Ł[

For c � 9[3 and 9[5\ the symmetric form with point contact ~attens into a symmetric shape with
line contact ðFig[ 1"b#Ł at point F in Figs 7 and 8\ respectively\ before the bifurcation point G is
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reached[ These shapes are stable until point G\ after which the strip slides into an asymmetric
con_guration with line contact[ If the strip is pushed down further\ a loop is formed when d

becomes su.ciently large\ as for c � 9[1[
Results for c � 9[7 are presented in Fig[ 09[ Symmetric con_gurations with point contact and

then line contact are stable until the bifurcation point J is reached[ Upon further increase of d\ the
~attened portion of the strip snaps into a buckled shape ðFig[ 1"c#Ł\ and the height of the buckled
region increases[

Figure 5 depicts equilibrium paths for the case c � 9\ when the ends of the strip are held together[
The symmetric shape with point contact is stable until G is reached\ and then the strip takes on an
asymmetric shape with point contact which spreads into line contact at W[ As d is increased
further\ the two ends of the strip take on the same curvature ðFig[ 05"a#Ł and then come into
contact over a region ðFig[ 05"b#Ł which enlargens until it reaches the ~at surface ðFig[ 05"c#Ł[

The analysis in this paper has assumed that there is no friction between the elastica and the
surface[ If friction is present\ the behavior may be di}erent than just described[ For example\ if
c � 9\ 9[1\ or 9[3 "Figs 5Ð7#\ the strip may remain symmetric and not move into an asymmetric
shape\ and then may exhibit the form in Fig[ 1"e# with two loops[ If c � 9[5\ the con_guration may
remain symmetric past point G in Fig[ 8 and then the central region will buckle when point J is
reached[ Friction may also cause the ~attened portion of the asymmetric shape with the form in
Fig[ 1"g# to buckle^ this was observed in an experiment\ but did not occur in the numerical
computations "since the nondimensional compressive load p in the asymmetric ~attened region
did not exceed the critical value "p:b#1\ where b is half the nondimensional contact length#[
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